Abstract

In this study, a novel method was developed for estimating the elastic modulus (Young's modulus) of soft contact lens materials using static compression optical coherence elastography. Using a commercially available spectral domain optical coherence tomography instrument, an experimental setup was developed to image a soft contact lens sample before and during compression with a known applied force, from which the lens material's mechanical properties can be derived. A semi-automatic segmentation method using graph-search theory and dynamic processing was used to trace the lens boundaries and to determine key structural changes within the images. To validate the method, five soft contact lens materials with a range of known elastic moduli and water contents were tested. The proposed method was successful in estimating the Young's modulus in the five different soft contact lens materials. It was demonstrated that the method provides highly repeatable measurements, with an intraclass correlation coefficient of >95%. The Young's modulus results were compared to published manufacturer data with no significant difference for four out of the five materials (p > 0.05). These results demonstrate that a static compression optical coherence tomography method can reliably measure the elastic modulus of soft contact lenses. This provides a methodology that can be used to explore in vitro contact lens mechanical properties, but more importantly, may also be extended to study the mechanical characteristics of in vivo or ex vivo tissue, provided that they can be imaged using OCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.