Abstract
Phase D is a dense hydrous magnesium silicate (ideal formula MgSi2H2O6) which contains silicon cations exclusively in octahedral coordination. Measurements of the unit cell parameters of phase D were made to pressures of 30 GPa using a diamond anvil cell and employing synchrotron X-ray diffraction. A neon pressure medium was used. Using a third order Birch-Murnaghan equation of state the isothermal bulk modulus of phase D was determined as 166(±3) GPa with K′ equal to 4.1(±0.3). The compression of phase D is anisotropic with the c-axis twice as compressible as the a-axis. Above 20 GPa, however, the c/a ratio becomes pressure independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.