Abstract

BackgroundPathophysiological features of coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 ARDS) were indicated to be somewhat different from those described in nonCOVID-19 ARDS, because of relatively preserved compliance of the respiratory system despite marked hypoxemia. We aim ascertaining whether respiratory system static compliance (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg IBW) at the 1st day of controlled mechanical ventilation are associated with intensive care unit (ICU) mortality in COVID-19 ARDS.MethodsObservational multicenter cohort study. All consecutive COVID-19 adult patients admitted to 25 ICUs belonging to the COVID-19 VENETO ICU network (February 28th–April 28th, 2020), who received controlled mechanical ventilation, were screened. Only patients fulfilling ARDS criteria and with complete records of Crs, DP and VT/kg IBW within the 1st day of controlled mechanical ventilation were included. Crs, DP and VT/kg IBW were collected in sedated, paralyzed and supine patients.ResultsA total of 704 COVID-19 patients were screened and 241 enrolled. Seventy-one patients (29%) died in ICU. The logistic regression analysis showed that: (1) Crs was not linearly associated with ICU mortality (p value for nonlinearity = 0.01), with a greater risk of death for values < 48 ml/cmH2O; (2) the association between DP and ICU mortality was linear (p value for nonlinearity = 0.68), and increasing DP from 10 to 14 cmH2O caused significant higher odds of in-ICU death (OR 1.45, 95% CI 1.06–1.99); (3) VT/kg IBW was not associated with a significant increase of the risk of death (OR 0.92, 95% CI 0.55–1.52). Multivariable analysis confirmed these findings.ConclusionsCrs < 48 ml/cmH2O was associated with ICU mortality, while DP was linearly associated with mortality. DP should be kept as low as possible, even in the case of relatively preserved Crs, irrespective of VT/kg IBW, to reduce the risk of death.

Highlights

  • Pathophysiological features of coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 Acute respiratory distress syndrome (ARDS)) were indicated to be somewhat different from those described in nonCOVID-19 ARDS, because of relatively preserved compliance of the respiratory system despite marked hypoxemia

  • In order to assess whether lung protective ventilation affects intensive care unit (ICU) mortality in patients with COVID-19 ARDS, we set up a study to test the hypothesis that static compliance of the respiratory system (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg Tidal volume normalized for ideal body weight (IBW)) are associated with ICU mortality

  • After excluding 463 patients, who did not receive controlled mechanical ventilation (CMV) or did not fulfill ARDS criteria [1] or did not have complete records in supine position, 241 patients from 21 ICUs were deemed eligible for data analysis (Fig. 1)

Read more

Summary

Introduction

Pathophysiological features of coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 ARDS) were indicated to be somewhat different from those described in nonCOVID-19 ARDS, because of relatively preserved compliance of the respiratory system despite marked hypoxemia. We aim ascertaining whether respiratory system static compliance (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg IBW) at the 1st day of controlled mechanical ventilation are associated with intensive care unit (ICU) mortality in COVID-19 ARDS. In order to assess whether lung protective ventilation affects intensive care unit (ICU) mortality in patients with COVID-19 ARDS, we set up a study to test the hypothesis that static compliance of the respiratory system (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg IBW) are associated with ICU mortality

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.