Abstract

Static coarsening mechanism of selective laser melted (SLMed) Ti–6Al–4V with a lamellar microstructure was established at temperatures from 700 °C to 950 °C. Microstructure evolution revealed that high heat treatment temperature facilitated martensite decomposition and promoted lamellae growth. At each temperature, the growth rate decreased with increasing holding time. The static coarsening behaviour of SLMed Ti–6Al–4V can be interpreted by Lifshitz, Slyozov, and Wagner (LSW) theory. The coarsening coefficient were 0.33, 0.33–0.4, 0.4–0.5 for 700–800 °C, 900 °C and 950 °C, respectively. This indicated the coarsening mechanism was bulk diffusion at 700–800 °C, and a combination of bulk diffusion and interface reaction at 900 °C and 950 °C conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.