Abstract
Purpose The purpose of this paper is to study the static buckling and free vibration of continuously graded ceramic-metal beams by employing a refined higher-order shear deformation, which is also the primary goal of this paper. Design/methodology/approach The proposed model is able to catch both the microstructural and shear deformation impacts without employing any shear correction factors, due to the realistic distribution of transverse shear stresses. The material properties are supposed to vary across the thickness direction in a graded form and are estimated by a power-law model. The equations of motion and related boundary conditions are extracted using Hamilton’s principle and then resolved by analytical solutions for calculating the critical buckling loads and natural frequencies. Findings The obtained results are checked and compared with those of other theories that exist in the literature. At last, a parametric study is provided to exhibit the influence of different parameters such as the power-law index, beam geometrical parameters, modulus ratio and axial load on the dynamic and buckling characteristics of FG beams. Originality/value Searching in the literature and to the best of the authors’ knowledge, there are limited works that consider the coupled effect between the vibration and the axial load of FG beams based on new four-variable refined beam theory. In comparison with a beam model, the number of unknown variables resulting is only four in the general cases, as against five in the case of other shear deformation theories. The actual model represents a real distribution of transverse shear effects besides a parabolic arrangement of the transverse shear strains over the thickness of the beam, so it is needless to use of any shear correction factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Multidiscipline Modeling in Materials and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.