Abstract
The purpose of this study was to determine the modulus of elasticity (MOE) and the modulus of rupture (MOR) in the radial bending test for small, clear specimens of Finnish birch (Betula pendula Roth and B. pubescens Ehrh) wood originating from mature trees. The dependency of MOE and MOR on the specific gravity of birch wood was studied, and the relationship between MOE and MOR was modelled at the different heights and at the different distances from the pith of the tree. For B. pendula, the mean values for MOE and MOR were 14.5 GPa and 114 MPa, whereas B. pubescens had means of 13.2 GPa and 104 MPa, respectively. At the corresponding specific gravity, the bending stiffness and strength values did not differ between the two species. The results indicated a linear relationship between the MOE and MOR, irrespective of the birch species or the within-stem location. Both MOE and MOR increased clearly from the pith towards the surface of the tree and decreased slightly from the base to the top of the tree. It seems that if products with as high stiffness and bending strength as possible are wanted, sorting of raw materials into different grades according to their within-tree origin can be of value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.