Abstract

This article deals with the static bending response of a functionally graded polymer composite (FG-PC) curved beam reinforced with carbon nanotubes (CNTs) subjected to sinusoidal and uniform loads. The effective material properties of beam are approximated according to modified rule of mixture. Four types of CNT distribution are also considered. Assuming Timoshenko beam theory and a higher-order strain gradient theory, size-dependent equilibrium equations are extracted. Using Navier solution procedure, nonlocal strain gradient governing equations are solved for simply-supported edges. Ultimately, numerical results are expanded to show the influence of weight fraction and distribution patterns of CNTs, small scale parameters, and opening angle on the static bending response of CNTs reinforced nanocomposite curved beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.