Abstract

The static balancing of spatial 6-degree-of-freedom parallel mechanisms or manipulators with revolute actuators is studied in this article. Two static balancing methods, namely, using counterweights and using springs, are used. The first method leads to mechanisms with a stationary global center of mass while the second approach leads to mechanisms whose total potential energy (including the elastic potential energy stored in the springs as well as the gravitational potential energy) is constant. The position vector of the global center of mass and the total potential energy of the manipulator are first expressed as functions of the position and orientation of the platform. Then, conditions for static balancing are derived from the resulting expressions. Finally, examples are given to illustrate the design methodologies. © 2000 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.