Abstract

PurposeTo comprehensively explore the potential brain activity abnormalities affected by MRI-negative temporal lobe epilepsy (TLE) and to detect whether the changes were associated with cognition and help in the diagnosis or lateralization. MethodSix static intrinsic brain activity (IBA) indicators (ALFF, fALFF, ReHo, DC, GSCorr, VMHC) and their corresponding six temporal dynamic indicators in 39 unilateral MRI-negative TLE patients and 42 healthy volunteers were compared. Correlation analyses were performed between these indicators in areas displaying group differences, cognitive function, and epilepsy duration. ROC analyses were performed to test the diagnostic and lateralization ability of the IBA parameters. ResultsConsiderable overlap was present among the abnormal brain regions detected by different static and dynamic indicators, including (1) alteration of fALFF, Reho, DC, VMHC, dfALFF, dReHo, and dDC in the temporal neocortex (predominately ipsilateral to the epileptogenic foci); (2) decreased dGSCorr and dVMHC in the occipital lobe. Meanwhile, the ReHo and VMHC values in the temporal neocortex correlated with the cognition scores or epilepsy duration (P < 0.01). The ROC analysis results revealed moderate diagnosis or lateralization efficiency of several IBA indicators (fALFF, dfALFF, ReHo, DC, dDC, and VMHC). ConclusionThe abnormal condition of neuronal activity in the temporal neocortex, predominately lateralized to the epileptic side, was a crucial feature in patients with MRI-negative TLE and might offer diagnosis or lateralization information. The application of dynamic intrinsic brain activity indicators played a complementary role, further revealing the temporal variability decline of the occipital lobe in MRI-negative TLE patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call