Abstract

This paper presents one-dimensional analysis of modified dynamic Reynolds equation derived for partial slip texture multi-lobe journal bearings. The novelty included in this study is the configuration of partial slip texture region on the bottom bearing lobe surface of a multi-lobe journal bearing under a constant vertical load. The nondimensional pressure and shear stress for steady-state and nondimensional pressure gradients for dynamic coefficients for each lobe with partial slip texture configuration are derived based on narrow groove theory. Linearized stability analysis is evaluated using infinitesimal perturbation method. Results of static and stability characteristics of partial slip texture multi-lobe (two-axial groove, elliptical, three-lobe and offset) journal bearings are presented. Partial slip texture configuration significantly enhances load capacity, coefficient of friction, and stability of two-lobe journal bearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.