Abstract

A novel strong-form numerical algorithm, piezoelectric vibration element differential method (PVEDM), is proposed for simulating the static deflection and forced vibration of the structure integrated with piezoelectric layers, with the host structure being homogeneous or functionally graded materials. A unified manner for the steady-state and dynamic responses of piezoelectric structures is set up by the proposed method, which draws on the merits of the finite element method and collocation method. In the whole process of assembling the system of equations, variational principle and integration are not required. Furthermore, the influence of boundary conditions on static deflection, and static shape control are investigated. Three examples of static and dynamic responses from one-layer structure, bimorph structure to the structure bonded with piezoelectric layers are given in turn. By comparing with analytical solution or ABAQUS, precise results are achieved, which verifies the the accuracy of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call