Abstract
The entire cycle of strength tests of the aircraft structure requires large expenditures of time and effort attributed to the manufacture of two full-size aircraft structures and two test rigs. The pace of development of modern aviation technology dictates strict requirements for timing and quality of testing, which allows us to ensure competitiveness in the world aircraft market. Therefore, when conducting a full cycle tests, shortening of the testing period becomes of particular importance. We consider a novel approach to strength testing of a full-scale transport aircraft structure which consists in static and fatigue tests carried out on the same object. The developed approach was tried out when testing the full-scale wing structure of a transport aircraft. The tests were carried out on a set-up that allowed reproducing both cases of static loading and variable loads of flight cycles. At the first stage, the static strength was proved by the results of finite-element calculation of the stress state of the structure at ultimate loads using a model verified by the strain measurements of one of the wing consoles under limit loads, as well as by testing typical and critical airframe elements. Samples of full-scale panels were additionally tested for buckling to confirm the load capacity of the upper wing panels. Fatigue tests were carried out in the time span of two design service life. The obtained results showed the possibility of conducting both static and fatigue tests using one and the same full-scale aircraft structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.