Abstract

Glass fiber-reinforced polymer (GFRP) bridge decks suffering frequent cyclic loading of heavy wheels require relatively thick pultruded composites. To examine the behavior of 12 mm thick pultruded GFRP plates containing surface layers and to study the influence of surface damage, which may be present on such decks, static and fatigue tensile tests were carried out. Severe indentation yielded not only visible damage, but also an invisible damage in the unidirectional layer. Loss of cross section area due to both damages affected the static ultimate loads. Fatigue cracks were found around higher stress concentrations on the surface layer as early as approximately 10% of the total fatigue life. These initial cracks, however, barely affected the fatigue life because delamination of the surface layers prevented the cracks from propagating. The invisible shear crack due to indentation barely affected the fatigue life since earlier splitting between initially damaged and undamaged fibers mitigated the crack prop...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call