Abstract

The thermodynamic properties of disks moving in a channel sufficiently narrow that they can collide only with their nearest neighbors can be solved exactly by determining the eigenvalues and eigenfunctions of an integral equation. Using it, we have determined the correlation length ξ of this system. We have developed an approximate solution which becomes exact in the high-density limit. It describes the system in terms of defects in the regular zigzag arrangement of disks found in the high-density limit. The correlation length is then effectively the spacing between the defects. The time scales for defect creation and annihilation are determined with the help of transition-state theory, as is the diffusion coefficient of the defects, and these results are found to be in good agreement with molecular dynamics simulations. On compressing the system with the Lubachevsky-Stillinger procedure, jammed states are obtained whose packing fractions ϕJ are a function of the compression rate γ. We find a quantitative explanation of this dependence by making use of the Kibble-Zurek hypothesis. We have also determined the point-to-set length scale ξPS for this system. At a packing fraction ϕ close to its largest value ϕmax, ξPS has a simple power law divergence, ξPS∼1/(1-ϕ/ϕmax), while ξ diverges much faster, ln(ξ)∼1/(1-ϕ/ϕmax).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.