Abstract

We model the statics and dynamics of wetting of liquids on thin rubber films. We show that at equilibrium the capillary forces deform soft substrates, leading to undulations of the rubber film surface originating at the triple line. Such deformations propagate when a liquid spreads on the rubber film. This induces the dissipation that may control the spreading dynamics. We derive a general expression for this dissipation as a function of the viscoelastic properties of the substrate. We calculate the spreading velocities for various mechanical relaxation models. Using available mechanical relaxation data, we find that our model may well account for the experimental observations of Carre and Shanahan, who demonstrated the importance of viscoelastic braking effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.