Abstract

The dynamics of the potential-sensitive styryl dye RH421 in dimyristoylphosphatidylcholine vesicles have been investigated above and below the main phase transition temperature using iodine-laser temperature-jump relaxation spectrophotometry and time-resolved fluorescence lifetime measurements. Equilibrium fluorescence titrations have shown that the affinity of the dye for the membrane is much higher in the liquid-crystalline state than in the gel state. The interaction can be described by either a partition or a binding model and a theory is presented providing a relation between these two approaches. In the liquid-crystal-line state bound dye exhibits steady-state fluorescence relaxation processes in the submicrosecond and millisecond time range following a temperature jump. Time-resolved fluorescence measurements show a variation in the fluorescence lifetime across the emission spectrum, suggesting an excited-state process occurring on the subnanosecond time scale. These processes are most likely related to dye and/or lipid reorientation following the temperature jump or excitation pulse. Temperature-dependent changes in the fluorescence excitation spectrum of bound dye suggest that the dye exists in at least two different sites within the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.