Abstract

The static and dynamic stability of a rotating tapered beam having an elliptical cross-section subjected to a pulsating axial load with a thermal gradient is investigated under three different boundary conditions, such as clampedclamped (C-C), clamped-pinned (C-P), and pinned-pinned (P-P). The governing equations of motion have been derived by using Hamilton’s energy principle. A set of Hill’s equations have been obtained by the application of generalized Galerkin’s method. The effects of taper parameter, hub radius, rotational speed, thermal gradient, and geometric parameter on the static buckling loads and the regions of instability have been studied and the results are presented graphically

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call