Abstract

The analysis of flexural strength and free vibration of carbon nanotube reinforced composite cylindrical panels is carried out. Four types of distributions of uniaxially aligned reinforcements are considered, i.e. uniform and three kinds of functionally graded distributions of carbon nanotubes along thickness direction of the panels. Material properties of nanocomposite panels are estimated by employing an equivalent continuum model based on the Eshelby–Mori–Tanaka approach. The governing equations are developed based on the first-order shear deformation shell theory. Detailed parametric studies have been carried out to reveal the influences of volume fraction of carbon nanotubes, edge-to-radius ratio and thickness on flexural strength and free vibration responses of the panels. In addition, effects of different boundary conditions and types of distributions of carbon nanotubes are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.