Abstract
Composite materials have distinct properties such as a high strength-to-weight ratio, high corrosion resistance, a high modulus-to-weight ratio and wear resistance. The potential, strong mechanical properties and lower cost of E-glass fiber motivated the authors to carry out this work. Tensile, flexural and Izod impact tests were used in the current study to conduct a static analysis of an E-glass-reinforced isophthalic polyester composite and an E-glass-reinforced general-purpose (GP) or orthophthalic polyester composite. The thermal–mechanical behavior was investigated using thermogravimetric analysis and dynamic mechanical analysis tests. Furthermore, the surface morphology of the tested composites was examined using scanning electron microscopy (SEM). When compared with the E-glass-reinforced GP polyester composite, the E-glass–isophthalic polyester composite demonstrated superior flexural properties and thermal stability. However, the tensile and impact properties of the E-glass–GP polyester composite were found to be higher than those of the E-glass–isophthalic polyester composite. SEM images show fiber pullout, matrix cracking and fiber breakage, among other things. The loss modulus and damping values of the E-glass-reinforced GP polyester composite were found to be greater than those of the E-glass-reinforced isophthalic polyester composite. The current composite can be used in marine applications, particularly the hull frame or body of the boat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.