Abstract

Using strain to control magnetic properties through anisotropy changes is a method to create functional materials with energy efficient applications. The strain can be inferred remotely by the light-induced non-thermal dimension change of materials named the photostrictive effect. Still, the control of dynamic magnetic properties via this effect is pursued. The need of a physical quantity to encompass and to describe anisotropic magnetization changes under the photostrictive effect is also remaining. Here, the photostrictive effect with visible light is used to engineer static and dynamic magnetic properties in a multiferroic material. A converse magneto-photostrictive coupling coefficient is also proposed as a physical quantity to assess anisotropic magnetization changes under this effect. These results provide a path towards understanding light-induced magnetization changes and a potential to be used in wireless approaches for the control of magnetic properties and tunable RF/microwave devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.