Abstract

The success of human robot interaction (HRI) tasks is characterized by evaluating robot performance in terms of collision safety and position accuracy. Hence, both position accuracy and collision safety are equally indispensable. HRI refers to cognitive as well as physical interaction. Cognitive human robot interaction based on perception and awareness where as physical human robot interaction demands direct contact with the humans exhibiting adaptable compliant behavior. Therefore, development of ideal safe robot manipulator having adaptable compliant actuation is inevitable. Adaptable compliance can be achieved by using active compliant actuation requiring various sensor data or by using passive compliant devices with high mechanical complexity. We present magneto rheological fluid based compliant actuation mechanism introducing adaptable compliance directly into robotic joint with much simpler interaction control and higher intrinsic safety originating from fluid mechanics. In this study, we have discussed adaptable compliance in terms of essential modes of motion for safe physical HRI and evaluated the safety performance of our robot for static collision testing and dynamic collision testing based on impact force and head injury criterion. Finally, the experimental results validate the significance of our proposed method for both human robot collision safety and high position accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call