Abstract

Abstract A set of procedures was presented for characterizing static and dynamic response of tensegrity modules. The procedures were applied to two tensegrity modules: a six-bar spherical module and a two-stage cylindrical module with three bars at each stage. The singular value decomposition of the initial equilibrium matrix revealed pre-stress and infinitesimal mechanism modes. The pre-stress stiffening effect of mechanism modes was found to be isotropic at each node. In the initial quasi-static loading, infinitesimal mechanisms exhibited soft response. As the deformation advanced, the stiffness of tensegirty modules increased almost quadratically with infinitesimal mechanism-mode amplitudes. Modal analyses revealed that the lowest modes were those of mechanism modes and their natural frequencies were an order of magnitude smaller than those of higher deformation modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.