Abstract

BackgroundStudies have revealed that intrinsic neural activity varies over time. However, the temporal variability of brain local connectivity in internet gaming disorder (IGD) remains unknown. The purpose of this study was to explore the alterations of static and dynamic intrinsic brain local connectivity in IGD and whether the changes were associated with clinical characteristics of IGD.MethodsResting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 36 individuals with IGD (IGDs) and 44 healthy controls (HCs) matched for age, gender and years of education. The static regional homogeneity (sReHo) and dynamic ReHo (dReHo) were calculated and compared between two groups to detect the alterations of intrinsic brain local connectivity in IGD. The Internet Addiction Test (IAT) and the Pittsburgh Sleep Quality Index (PSQI) were used to evaluate the severity of online gaming addiction and sleep quality, respectively. Pearson correlation analysis was used to evaluate the relationship between brain regions with altered sReHo and dReHo and IAT and PSQI scores. Receiver operating characteristic (ROC) curve analysis was used to reveal the potential capacity of the sReHo and dReHo metrics to distinguish IGDs from HCs.ResultsCompared with HCs, IGDs showed both increased static and dynamic intrinsic local connectivity in bilateral medial superior frontal gyrus (mSFG), superior frontal gyrus (SFG), and supplementary motor area (SMA). Increased dReHo in the left putamen, pallidum, caudate nucleus and bilateral thalamus were also observed. ROC curve analysis showed that the brain regions with altered sReHo and dReHo could distinguish individuals with IGD from HCs. Moreover, the sReHo values in the left mSFG and SMA as well as dReHo values in the left SMA were positively correlated with IAT scores. The dReHo values in the left caudate nucleus were negatively correlated with PSQI scores.ConclusionsThese results showed impaired intrinsic local connectivity in frontostriatothalamic circuitry in individuals with IGD, which may provide new insights into the underlying neuropathological mechanisms of IGD. Besides, dynamic changes of intrinsic local connectivity in caudate nucleus may be a potential neurobiological marker linking IGD and sleep quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call