Abstract
The static and dynamic problems of Bernoulli–Euler beams are solved analytically on the basis of strain gradient elasticity theory due to Lam et al. The governing equations of equilibrium and all boundary conditions for static and dynamic analysis are obtained by a combination of the basic equations and a variational statement. Two boundary value problems for cantilever beams are solved and the size effects on the beam bending response and its natural frequencies are assessed for both cases. Two numerical examples of cantilever beams are presented respectively for static and dynamic analysis. It is found that beam deflections decrease and natural frequencies increase remarkably when the thickness of the beam becomes comparable to the material length scale parameter. The size effects are almost diminishing as the thickness of the beam is far greater than the material length scale parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.