Abstract

ObjectivesDegenerative (myxomatous) mitral valve disease is an important cardiac disease in dogs and humans. The mechanisms that initiate and propagate myxomatous pathology in mitral valves are poorly understood. We investigated the hypothesis that tensile strain initiates expression of proteins that mediate myxomatous pathology. We also explored whether tensile strain could induce the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1), serotonin synthesis, and markers of chondrogenesis. AnimalsMitral valves were obtained postmortem from dogs without apparent cardiovascular disease. MethodsMitral valves were placed in culture and subjected to 30% static or cyclic tensile strain and compared to cultured mitral valves subjected to 0% strain for 72 h. Abundance of target effector proteins, TPH1, and chondrogenic marker proteins was determined by immunoblotting. Serotonin was measured in the conditioned media by ELISA. ResultsBoth static and cyclic strain increased (p < 0.05) expression of myxomatous effector proteins including markers of an activated myofibroblast phenotype, matrix catabolic and synthetic enzymes in canine mitral valves compared to unstrained control. Expression of TPH1 was increased in statically and cyclically strained mitral valves. Expression of chondrogenic markers was increased in statically strained mitral valves. Serotonin levels were higher (p < 0.05) in media of cyclically strained valves compared to unstrained valves after 72 h of culture. ConclusionStatic or cyclic tensile strain induces acute increases in the abundance of myxomatous effector proteins, TPH1, and markers of chondrogenesis in canine mitral valves. Canine mitral valves are capable of local serotonin synthesis, which may be influenced by strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.