Abstract

Some effects in the soliton dynamics governed by higher-order Korteweg-de Vries (KdV) type equations are discussed. This is done based on the exact explicit solutions of the equations derived in the paper. It is shown that some higher order KdV equations possessing multisoliton solutions also admit steady state solutions in terms of algebraic functions describing localized patterns. Solutions including both those static patterns and propagating KdV-like solitons are combinations of algebraic and hyperbolic functions. It is shown that the localized structures behave like static solitons upon collisions with regular moving solitons, with their shape remaining unchanged after the collision and only the position shifted. These phenomena are not revealed in common multisoliton solutions derived using inverse scattering or Hirota's method. The solutions of the higher-order KdV type equations were obtained using a method devised for obtaining soliton solutions of nonlinear evolution equations. This method can be combined with Hirota's method with a modified representation of the solution which allows the results to be extended to multisoliton solutions. The prospects for applying the methods to soliton equations not of KdV type are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call