Abstract

Collision-induced vibrational energy transfer has been studied from three vibrational levels at intermediate state density in S1 p-difluorobenzene in a supersonic free jet expansion. Transfer was studied from the 51 (Evib=818 cm−1; ρvib=0.6 per cm−1), 292 (Evib=876 cm−1; ρvib=0.6 per cm−1), and 5182 (Evib=1179 cm−1; ρvib=2.3 per cm−1) levels. The collision partners include a range of monatomics, diatomics, and polyatomics for 51 and 292. Hydrogen was the collision partner for 5182. For 292, transfers involving multiple changes in vibrational quanta are important, and generally such transfers dominate. This behavior is different from that observed at low state densities but is analogous to what has been observed previously at intermediate state densities in p-difluorobenzene [Mudjijono and W. D. Lawrance, J. Chem. Phys. 108, 4877 (1998)]. There is a suggestion in the data for c-propane and ethane that transfer to vibrational modes of these collision partners is occurring. 51 shows very inefficient relaxation. With the exception of N2, there is no evidence in the spectra for significant transfer via channels involving multiple changes in vibrational quanta. The state-to-state branching ratios for transfer from 5182 were essentially in quantitative agreement with those expected based on transfer from 82. It appears that the in-plane mode ν5, and combinations involving low frequency modes with ν5, behave qualitatively differently to the lower frequency, out-of-plane modes. The lower frequency, out-of-plane modes change their state-to-state relaxation preferences with increasing vibrational state density, with multiple quantum changes becoming preferred, while the higher frequency in-plane ν5 retains the state-to-state preferences seen at low state densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.