Abstract
An extensive data set of 54 time-resolved pump-probe measurements was used to examine CO + He rotational energy transfer within the CO v = 2 rotational manifold. Rotational levels in the range Ji = 2-9 were excited and collisional energy transfer of population to the levels Jf = 1-10 was monitored. The resulting data set was analyzed by fitting to numerical solutions of the master equation. State-to-state rate constant matrices were generated using fitting law functions and ab initio theoretical calculations that employed the SAPT potential energy surface of Heijmen et al. [J. Chem. Phys. 107, 9921 (1997)]. Fitting laws based on the modified exponential gap (MEG), statistical power exponential gap (SPEG), and energy corrected sudden with exponential power (ECS-EP) models all yielded acceptable simulations of the kinetic data, as did the theoretical rate constants. However, the latter were unique in their ability to reproduce both our kinetic data and the pressure broadening coefficients for CO + He. These results provide an impressive demonstration of the quality of the symmetry adapted perturbation theory (SAPT) potential energy surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.