Abstract

Rotationally resolved, velocity distributions for desorbed O2 molecules formed by O-atom recombination on the surface of a polycrystalline Ag surface are reported. Surface O atoms are generated by oxygen permeation through a 0.25-mm-thick Ag foil heated to 1020 K. Desorbing O2 molecules are probed by (2 + 1) resonant multiphoton ionization via the C 3Pig (3ssigma), v' = 2 <-- <-- X 3Sigmag-, v" = 0 transition and time-of-flight mass spectrometry. Measured velocity distributions are near Maxwell-Boltzmann and yield average translational energies which are significantly lower than the surface temperature ([Et]/2kB approximately 515 K) and essentially independent of rotational excitation. Comparison of the observed C-X (2,0) resonantly enhanced multiphoton ionization spectrum with spectral simulations suggests that the v" = 0 rotational state distribution is more consistent with the surface temperature, but spectral congestion and apparent intensity perturbations prevent a more quantitative analysis. The calculated, sticking curves show a small barrier energy barrier (approximately 10 meV) beyond which sticking decreases. These observations are consistent with low energy desorption and adsorption pathways involving a weakly bound molecular O2 precursor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.