Abstract

The article deals with the issue of modelling shear processes in plastic soils. The peculiarity and main difficulty of modelling landslide processes is the need to take into account a large number of various natural and technogenic influences on the slope, each of which can significantly affect its overall stability. It is also important to take into account not only the current state of the slope but also the forecasting of factors that may affect it over time. In this case, it may be justified to create complex models that include several interconnected sub-models to describe various physical phenomena. Considering the complexity of calculations to determine the stability of the slope or shear pressure on engineering protection structures, it is not surprising that all calculation methods rely on some assumptions when building calculation models to describe physical phenomena and reduce the complexity of calculations. However, it should be noted that the modelling of the non-linear behaviour of soils and the use of models that more accurately describe physical phenomena and processes occurring on slopes can significantly affect the results of calculations.
 The article presents the main relationships of the mathematical model of elastic-plastic deformation of soils. The given ratios allow taking into account such phenomena as dilatancy and contraction, which makes it possible to more accurately model the stress-strain state of the soil medium, the distribution of pressure in the soil, taking into account the change in physical and mechanical properties during the deformation process.
 In the article, the finite element method is chosen as the most effective method of numerical modelling of shear processes. Certain aspects of the implementation of calculations based on a complex model and the justification for determining the coefficient of slope stability within the framework of this method are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.