Abstract

BackgroundThe high recurrence of major depressive disorder (MDD) may derive from underlying state-independent structural alterations. MethodsFirst-episode drug-naïve currently depressed (cMDD) patients (N = 97), remitted depressed (RD) patients (N = 72), and healthy controls (HCs, N = 100) underwent structural magnetic resonance imaging (MRI). Group differences in cortical thickness (CT), surface area (SA), and local gyrification index (lGI) were analyzed in FreeSurfer. ResultsBoth groups of depressed patients had significantly decreased CT, relative to HCs, in the left precentral gyrus and significantly increased lGI values in the left superior frontal gyrus (SFG) indicative of state-independent alterations. Relative to HCs, the cMDD group had decreased CT of the SFG, caudal middle frontal gyrus (MFG), posterior cingulate cortex (PCC), and lateral occipital regions as well as increased SA or lGI of the superior temporal gyrus, precuneus, and pericalcarine, whereas the RD group had increased SA or lGI of the SFG, caudal MFG, and supramarginal gyrus; these alterations appeared to be state-dependent. SA or lGI values of the fusiform gyrus, inferior temporal gyrus, and superior parietal lobule differed between the cMDD and RD groups, consistent with state-dependent alterations. Beck depression inventory scores correlated with CT or lGI values of the caudal MFG, lateral occipital cortex in depressed patients. LimitationsThe structural features of several subcortical limbic regions were not analyzed. ConclusionsLeft precentral gyrus CT and left SFG gyrification alterations may represent state-independent alterations in MDD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call