Abstract

Using X-ray monitoring observations with the ASM on board the RXTE and the BAT on board the Swift, we are able to study the spectral state transitions occurred in about 20 bright persistent and transient black hole and neutron star binaries. We have confirmed that there is a correlation between the X-ray luminosity corresponding to the hard-to-soft transition and the X-ray luminosity of the following soft state. This correlation holds over a luminosity range spanning by two orders of magnitude, with no indication of a flux saturation or cut-off. We have also found that the transition luminosity correlates with the rate of increase in the X-ray luminosity during the rising phase of an outburst or flare, implying that the origin of the variation of the transition luminosity is associated with non-stationary accretion in both transient sources and persistent sources. The correlation between the luminosity corresponding to the end of the soft-to-hard transition and the peak luminosity of the preceding soft state is found insignificant. The results suggest that the hysteresis effect of spectral state transitions is primarily driven by non-stationary accretion when the mass accretion rate increases rather than the mass accretion rate decreases. Our results also imply that Galactic X-ray binaries can reach more luminous hard states during outbursts of higher luminosities and of similar rise time scales as those observed. Based on the correlations, we speculate that bright hard state beyond the Eddington luminosity will be observed in Galactic binaries in the next century. We also suggest that some ultra-luminous X-ray sources in nearby galaxies, which stay in the hard states during bright, short flares, harbor stellar-mass compact stars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.