Abstract

Extended Kalman filter (EKF) is a widely used estimator for integrated navigation systems, and it works well in general situations. However, in adverse conditions such as partially observable environments and highly dynamic maneuvers, the performance of the traditional EKF-based strap-down inertial navigation system (SINS)/GPS integrated navigation system is easily to be affected by the dynamic changes of the specific force, thus leading to the problem of error covariance inconsistency. Though the inconsistency problem can be overcome to some extent if the system matrix, the states and the error covariance matrix are propagated as fast as possible in the SINS calculation rate, the problem cannot be fully solved. State transformation extended Kalman filter (ST-EKF) mechanization, with a new converted velocity error model for the SINS, is proposed, which can also be used to solve the inconsistency problem. In the ST-EKF, the specific force vector in the system error model is replaced by the nearly constant gravity vector for local navigation. Since the propagation and the updating of the ST-EKF can be executed simultaneously in the updating interval, the computation cost is greatly reduced compared with the traditional EKF. Experiments for the GPS/SINS tightly coupled navigation, including linear vibration Monte Carlo test and an unmanned aerial vehicle flight test, are implemented to evaluate the performance of the proposed ST-EKF. The results show that the proposed ST-EKF has superior performance to the traditional EKF, especially in partially observable situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call