Abstract
The influence of reagent rotation on the dynamics of the D+H2 -->HD+H reaction is studied. The state-resolved differential cross section is measured using the Rydberg-atom scheme in a crossed beam experiment. It is found that the H2 rotation has a strong influence on the results. This effect was traced to the selection of the quantum bottleneck states through reagent orientation, thus suggesting a novel strategy to control the transition-state pathways in direct chemical reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.