Abstract

Quantum state-to-state dynamics for the N((4)S) + OH(X( 2)Π) → H((2)S) + NO(X( 2)Π) reaction is reported on an accurate ab initio potential energy surface of the lowest triplet electronic state (a(3)A(")) of HNO∕HON. It was found that the reaction is dominated by long-lived resonances supported by the HNO and HON wells. Significant non-reactive scattering was observed, indicating substantial deviations from the statistical limit. Due to the large exothermicity of the reaction, the NO product has hot internal state distributions: its rotational state distribution is inverted and peaks near the highest accessible rotational level; and its vibrational state distribution extends to υ = 10 and decays monotonically with the vibrational quantum number. In particular, the predicted product vibrational distribution is in reasonably good agreement with experiment. The calculated differential cross section is dominated by scattering in both the forward and backward directions, consistent with the formation of reaction intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call