Abstract

Accurate three-dimensional quantum-mechanical scattering calculations using a time-indepedent hyperspherical method have been performed for the C((3)P) + OH(X(2)Π) → CO(a(3)Π) + H((2)S) reaction on the second excited potential energy surface of 1(4)A″ symmetry. State-to-state reaction probabilities at a total angular momentum J = 0 have been computed in a wide range of collision energies. Many pronounced resonances have been found, espcially at low energy. The product vibrational distributions are noninverted. The present results therefore suggest that the title reaction proceeds via a long-lived intermediate complex. An approximate quantum-mechanical rate constant has also been calculated, and large differences are observed with the quasi-classical trajectory prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.