Abstract
Molecular oxygen (O2) is extremely important for a wide variety of processes on and outside Earth. Indeed, O2–He collisions are crucial to model O2 abundance in space or to create ultracold O2 molecules. A crossed molecular beam experiment to probe rotational excitation of O2 due to helium collisions at energies of 660 cm–1 is reported. Velocity map imaging was combined with state-selective detection of O2(X3Σg–) by (2+1) resonance-enhanced multiphoton ionization. The obtained raw O2+ images were corrected from density to flux and the differential cross sections (DCS) were then extracted for six O2 final states. Exact quantum mechanical calculations were also performed. A very good agreement between experimental and theoretical DCSs was found by using an initial O2 beam population ratio of 80% for the first rotational state and 20% for the first excited state. The agreement demonstrates our ability to model inelastic processes between O2 molecules and rare gas both theoretically and experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.