Abstract

Collisional transfer within the CN A 2Π v=3 vibrational manifold and to the X 2Σ+ v=7 manifold has been studied with initial and final rotational state resolution by an optical–optical double resonance technique. Despite the large energy gap between these two manifolds, the interelectronic cross sections are significant for only a relatively small range of ΔJ, and there is no observable propensity for energy resonant, large ΔJ transitions. The even–odd alternation vs N, observed previously in vA=7 collisions [N. Furio, A. Ali, and P. J. Dagdigian, J. Chem. Phys. 85, 3860 (1986)] and indicative of the near homonuclear form of the CN–Ar interaction potentials, is even more pronounced here for vA=3. The relative rate of intraelectronic and interelectronic energy transfer for the vA=3 N=6 F1f initial level was found to be comparable to that for the corresponding vA=7 level, despite the smaller Franck–Condon factor and larger energy gap to the neighboring vX=vA−4 manifold for the former.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.