Abstract

It is difficult to solve complex tasks that involve large state spaces and long-term decision processes by reinforcement learning (RL) algorithms. A common and promising method to address this challenge is to compress a large RL problem into a small one. Towards this goal, the compression should be state-temporal and optimality-preserving (i.e., the optimal policy of the compressed problem should correspond to that of the uncompressed problem). In this paper, we propose a reward-restricted geodesic (RRG) metric, which can be learned by a neural network, to perform state-temporal compression in RL. We prove that compression based on the RRG metric is approximately optimality-preserving for the raw RL problem endowed with temporally abstract actions. With this compression, we design an RRG metric-based reinforcement learning (RRG-RL) algorithm to solve complex tasks. Experiments in both discrete (2D Minecraft) and continuous (Doom) environments demonstrated the superiority of our method over existing RL approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.