Abstract
This paper studies the realizability property of continuous-time bilinear input–output (i/o) equations in the classical state space form. Constraints on the parameters of the bilinear i/o model are suggested that lead to realizable models. The paper proves that the 2nd order bilinear i/o differential equation, unlike the discrete-time case, is always realizable in the classical state space form. The complete list of 3rd and 4th order realizable i/o bilinear models is given and two subclasses of realizable i/o bilinear systems are suggested. Our conditions rely basically upon the property that certain combinations of coefficients of the i/o equations are zero or not zero. We provide explicit state equations for all realizable 2nd and 3rd order bilinear i/o equations, and for one realizable subclass of bilinear i/o equations of arbitrary order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.