Abstract
States of a Markov chain may be reordered to reduce the magnitude of the subdominant eigenvalue of the Gauss--Seidel (GS) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the GS splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semiconvergent. On the other hand, there are semiconvergent state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. Moreover, a version of the Cuthill--McKee algorithm may be used to order the states of a Markov chain so that Property-R is satisfied. The computational complexity of the ordering algorithm is less than that of a single GS iteration. In doing all this, the aim is to gain insight into (faster) converging orderings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.