Abstract
This paper proposes a novel similarity measure for clustering sequential data. We first construct a common state space by training a single probabilistic model with all the sequences in order to get a unified representation for the dataset. Then, distances are obtained attending to the transition matrices induced by each sequence in that state space. This approach solves some of the usual overfitting and scalability issues of the existing semi-parametric techniques that rely on training a model for each sequence. Empirical studies on both synthetic and real-world datasets illustrate the advantages of the proposed similarity measure for clustering sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.