Abstract

Interpolation between unconstrained optimal input trajectories and feasible trajectories forms the basis for a computationally efficient predictive control algorithm but lacks robustness in that uncertainty can destroy the guarantee of feasibility. To overcome this problem it is possible to introduce into the interpolation process a further input trajectory which is referred as ‘mean level’. This has been accomplished in an input–output setting and the purpose of the present paper is to show that it is possible to get a considerably simpler algorithm by recasting the problem into state-space form. Copyright © 2000 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.