Abstract

The photodissociation dynamics of NCO have been examined using fast beam photofragment translational spectroscopy. Excitation of the 102, 301, and 102302 transitions of the B̃ 2Π←X̃ 2Π band produces N(4S)+CO photofragments exclusively, while excitation of the 103303 transition yields primarily N(2D)+CO photoproducts. The translational energy [P(ET)] distributions yield D0(N–CO)=2.34±0.03 eV, and ΔHf,00(NCO)=1.36±0.03 eV. The P(ET) distributions exhibit vibrationally resolved structure reflecting the vibrational and rotational distributions of the CO product. The N(2D)+CO distribution can be fit by phase space theory (PST), while the higher degree of CO rotational excitation for N(4S)+CO products implies that NCO passes through a bent geometry upon dissociation. The P(ET) distributions suggest that when the B̃ 2Π←X̃ 2Π band is excited, NCO undergoes internal conversion to its ground electronic state prior to dissociation. Excitation of NCO at 193 nm clearly leads to the production of N(2D)+CO fragments. While conclusive evidence for the higher energy O(3P)+CN(X 2Σ+) channel was not observed, the presence of this dissociation pathway could not be excluded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call