Abstract

We present the design of a novel, ultralow-phase-noise frequency synthesizer implemented with extremely-low-noise regenerative frequency dividers. This synthesizer generates eight outputs, viz. 1.6 GHz, 320 MHz, 160 MHz, 80 MHz, 40 MHz, 20 MHz, 10 MHz and 5 MHz for an 8 GHz input frequency. The residual single-sideband (SSB) phase noises of the synthesizer at 5 and 10 MHz outputs at 1 Hz offset from the carrier are -150 and -145 dBc/Hz, respectively, which are unprecedented phase noise levels. We also report the lowest values of phase noise to date for 5 and 10 MHz RF signals achieved with our synthesizer by dividing an 8 GHz signal generated from an ultra-stable optical-comb-based frequency division. The absolute SSB phase noises achieved for 5 and 10 MHz signals at 1 Hz offset are -150 and -143 dBc/Hz, respectively; at 100 kHz offset, they are -177 and -174 dBc/Hz, respectively. The phase noise of the 5 MHz signal corresponds to a frequency stability of approximately 7.6 × 10(-15) at 1 s averaging time for a measurement bandwidth (BW) of 500 Hz, and the integrated timing jitter over 100 kHz BW is 20 fs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call