Abstract

Post-activation potentiation (PAP), described as a muscular phenomenon, refers to the enhancement of contractile properties following a voluntary or electrically stimulated short duration (< 10s) high-intensity contraction. Mechanistic factors and subsequent effects on voluntary performance have been well documented. Associations between neural activation and PAP, however, are less understood and systematically have not been explored. Thus, the aim is to critically summarize the current understanding of PAP regarding the motor pathway from the corticospinal tract to spinal level factors including the H-reflex and motor unit activation. This review highlights aspects for further investigation by providing an integrative summary of the relationship between PAP and neural control. Contractile history affects neural control in subsequent contractions, (e.g. fatiguing tasks), however, by contrast acute contractile enhancement due to PAP in relation to neural responses are not well-studied. From the limited number of investigations, motor unit discharge rates are reduced subsequent to PAP and, although less consistently reported, generally H-reflexes are depressed. Additionally, corticomedullary evoked potentials are depressed and the cortical silent period is elongated. Thus, overall there is a depression of spinal and supraspinal responses following PAP. Although specific factors responsible and their pathways are unclear, this down-regulation may occur to conserve neural activation when muscle contraction is more responsive, and concurrently a strategy used to delay neuromuscular fatigue. Indeed, the co-existence of PAP and fatigue is not a novel concept, but the interactions between PAP and neural responses are not understood and likely are more than coincidental.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call