Abstract

<abstract> <p>The primary purpose of fuel cell hybrid electric vehicles (FCHEVs) is to tackle the challenge of environmental pollution associated with road transport. However, to benefit from the enormous advantages presented by FCHEVs, an appropriate energy management system (EMS) is necessary for effective power distribution between the fuel cell and the energy storage systems (ESSs). The past decade has brought a significant increase in the number of FCHEVs, with different EMSs having been implemented due to technology advancement and government policies. These methods are broadly categorised into rule-based EMS methods, machine learning methods and optimisation-based control methods. Therefore, this paper presents a systematic literature review on the different EMSs and strategies used in FCHEVs, with special focus on fuel cell/lithium-ion battery hybrid electric vehicles. The contribution of this study is that it presents a quantitative evaluation of the different EMSs selected by comparing and categorising them according to principles, technology maturity, advantages and disadvantages. In addition, considering the drawbacks of some EMSs, gaps were highlighted for future research to create the pathway for comprehensive emerging solutions. Therefore, the results of this paper will be beneficial to researchers and electric vehicle designers saddled with the responsibility of implementing an efficient EMS for vehicular applications.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.