Abstract

Dissolving microneedles (MNs) have emerged as a promising transdermal delivery system, as they integrate the advantages of both injection and transdermal preparations. However, the low drug-loading and limited transdermal delivery efficiency of MNs severely hinder their clinical applications. Microparticle-embedded gas-propelled MNs were developed to simultaneously improve drug-loading and transdermal delivery efficiency. The effects of mold production technologies, micromolding technologies, and formulation parameters on the quality of gas-propelled MNs were systematically studied. Three-dimensional printing technology was found to prepare male mold with the highest accuracy, while female mold made from the silica gel with smaller Shore hardness could obtain a higher demolding needle percentage (DNP). Vacuum micromolding with optimized pressure was superior to centrifugation micromolding in preparing gas-propelled MNs with significantly improved DNP and morphology. Moreover, the gas-propelled MNs could achieve the highest DNP and intact needles by selecting polyvinylpyrrolidone K30 (PVP K30), polyvinyl alcohol (PVA), and potassium carbonate (K2CO3): citric acid (CA) = 0.15:0.15 (w/w) as the needle skeleton material, drug particle carrier, and pneumatic initiators, respectively. Moreover, the gas-propelled MNs showed a 1.35-fold drug loading of the free drug-loaded MNs and 1.19-fold cumulative transdermal permeability of the passive MNs. Therefore, this study provides detailed guidance for preparing MNs with high productivity, drug loading, and delivery efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call