Abstract

Data models are crucial for clinical research as they enable researchers to fully use the vast amount of clinical data stored in medical systems. Standardized data and well-defined relationships between data points are necessary to guarantee semantic interoperability. Using the Fast Healthcare Interoperability Resources (FHIR) standard for clinical data representation would be a practical methodology to enhance and accelerate interoperability and data availability for research. This research aims to provide a comprehensive overview of the state-of-the-art and current landscape in FHIR-based data models and structures. In addition, we intend to identify and discuss the tools, resources, limitations, and other critical aspects mentioned in the selected research papers. To ensure the extraction of reliable results, we followed the instructions of the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. We analyzed the indexed articles in PubMed, Scopus, Web of Science, IEEE Xplore, the ACM Digital Library, and Google Scholar. After identifying, extracting, and assessing the quality and relevance of the articles, we synthesized the extracted data to identify common patterns, themes, and variations in the use of FHIR-based data models and structures across different studies. On the basis of the reviewed articles, we could identify 2 main themes: dynamic (pipeline-based) and static data models. The articles were also categorized into health care use cases, including chronic diseases, COVID-19 and infectious diseases, cancer research, acute or intensive care, random and general medical notes, and other conditions. Furthermore, we summarized the important or common tools and approaches of the selected papers. These items included FHIR-based tools and frameworks, machine learning approaches, and data storage and security. The most common resource was "Observation" followed by "Condition" and "Patient." The limitations and challenges of developing data models were categorized based on the issues of data integration, interoperability, standardization, performance, and scalability or generalizability. FHIR serves as a highly promising interoperability standard for developing real-world health care apps. The implementation of FHIR modeling for electronic health record data facilitates the integration, transmission, and analysis of data while also advancing translational research and phenotyping. Generally, FHIR-based exports of local data repositories improve data interoperability for systems and data warehouses across different settings. However, ongoing efforts to address existing limitations and challenges are essential for the successful implementation and integration of FHIR data models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.