Abstract

The interface of nanobio science and cancer nanomedicine is one of the most important current frontiers in research, being full of opportunities and challenges. Ultrasmall fluorescent metal nanoclusters (MNCs) and carbon quantum dots (CQDs) have emerged as promising fluorescent nanomaterials due to their unique physicochemical and optical properties, facile surface functionalization, good photostability, biocompatibility, and aqueous dispersity. These characteristics make them advantageous over conventional fluorophores such as organic dye molecules and semiconductor quantum dots (QDs) for the detection, diagnosis, and treatment of various diseases including cancer. Recently, researchers have focused on the biofunctionalization strategy of the MNCs and CQDs which can tailor their physicochemical and biological properties and, in turn, can empower these biofunctionalized nanoprobes for diverse applications including imaging, drug delivery, theranostics, and other biomedical applications. In this invited feature article, we first discuss some fundamental structural and physicochemical characteristics of the fluorescent biocompatible quantum-sized nanomaterials which have some outstanding features for the development of multiplexed imaging probes, delivery vehicles, and cancer nanomedicine. We then demonstrate the diverse surface engineering of these fluorescent nanomaterials with reactive target specific functional groups which can help to construct multifunctional nanoprobes with improved targeting capabilities having minimal toxicity. The promising future of the biofunctionalized fluorescent quantum-sized nanomaterials in the field of bioanalytical and biomedical research is elaborately demonstrated, showing selected recent works with relevant applications. This invited feature article finally ends with a short discussion of the current challenges and future prospects of the development of these bioconjugated/biofunctionalized nanomaterials to provide insight into this burgeoning field of MNC- and CQD-based diagnostics and therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call